# How can regulatory oversight keep up with the pace of bioscience innovation ?

CII 14th Food Safety, Quality & Regulatory Summit, New Delhi

Vincent Sewalt, PhD Senior Director, Regulatory Science & Advocacy DuPont Nutrition & Biosciences Palo Alto, CA, USA

Nutrition & Biosciences

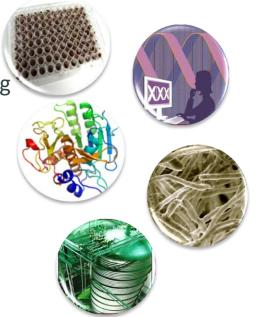


## **Food Innovation with Microbial Products**



Microbes used in human or animal food for:

### Manufacture of GRAS substances:


- enzymes, vitamins, amino acids, oligosaccharides, sweeteners, proteins
- Some of these may be regarded Novel Foods in some jurisdictions
- Production of a range of fermented/preserved foods:
  - bread, cheese, yoghurt/kefir, beer, tofu, kimchi, etc.

#### Probiotic function:

- Dietary supplements / health foods
- Direct Fed Microbial Products in animal feed

# Innovation in Nutritional Microbial Products is rapid accelerating

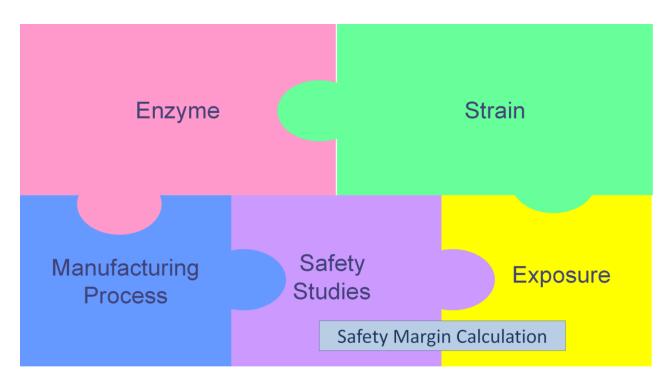
- Increased understanding of the microbiome
  - Nutribiosis: interaction between nutrition, gut microbiota, and immune response
- ✓ Modern methods of improvement & production:
  - New genetic techniques (rDNA, CRISPR)
  - High-throughput screening for protein engineering
  - Efficient scale-up
  - Enabling products not feasible before
    - Novel proteins from exotic sources
    - Tailored for application conditions
    - Cost-effective, from renewable resources
  - Better for people, animals & planet



## **Bioscience Innovation: Putting the Result in Perspective**

# OUPONT.

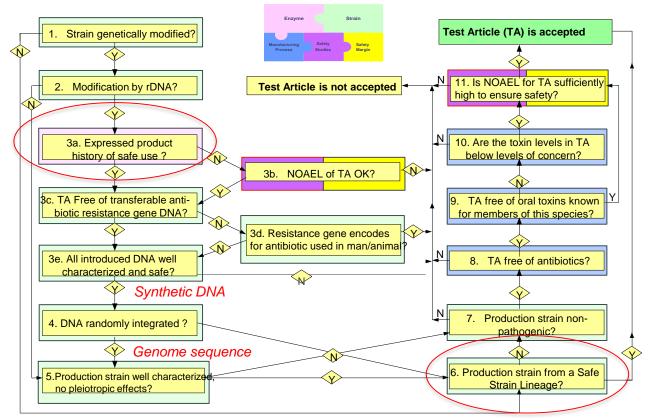



One fermentation run produces millions of grams of protease or amylase Enabling billions of loaves of bread baked that don't stale



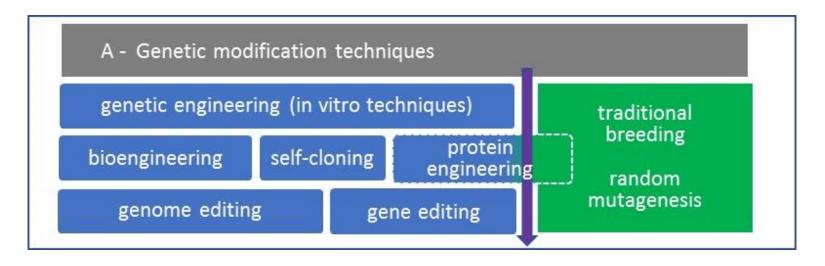
Enzymes as example for other microbial products:

- Used in very small quantities
- Made with modern biotechnology
- Long history of safe use
- Well-defined yet evolving safety evaluation methodology


# Safety Evaluation of Microbial Enzymes... 5 essential elements

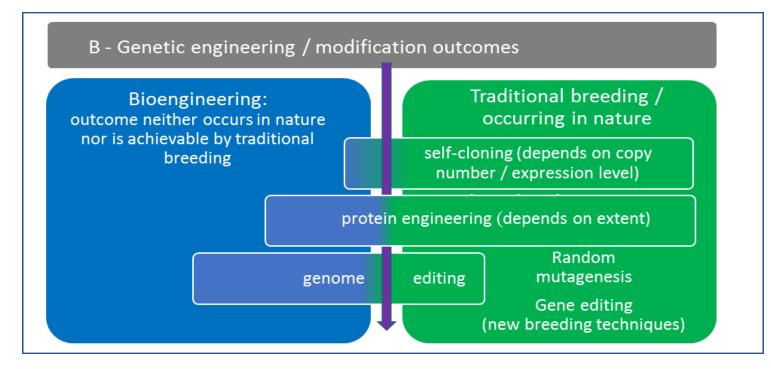


Sewalt V., Shanahan D., Gregg L., La Marta J., and Carrillo R. 2016. The Generally Recognized as Safe (GRAS) Process for Industrial Microbial Enzymes. Indust. Biotechnol. 12: 295-302. <u>https://doi.org/10.1089/ind.2016.0011</u>


# Pariza & Johnson (2001) Decision Tree






Pariza M.W. and Johnson E.A. 2001. Evaluating the safety of microbial enzyme preparations used in food processing: Update for a new century. Regul. Toxicol. Pharmacol. 33: 173–186. <u>https://doi.org/10.1006/rtph.2001.1466</u>

Delineation of genetic modification techniques - EU way of looking at GMO

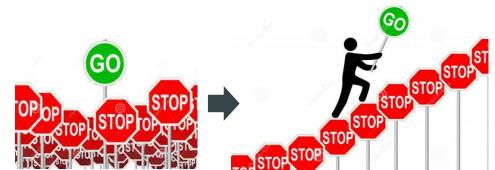


#### EU way of looking at GMO – based on technique, not outcome

\*Hanlon and Sewalt, 2020. GEMs: regulatory oversight of their uses in modern food production. IFT (submitted)



US way of looking at GMO – based on outcome, not technique


\*Hanlon and Sewalt, 2020. GEMs: regulatory oversight of their uses in modern food production. IFT (submitted)

# < DUPONT >

# Achieving acceptance for modern biotechnology products

#### Enzymes serve as a great example that can be duplicated

- Long history of safe use in food (bread, beer, dairy)
- Use of GE microbes enabled more sustainable enzyme production
- Use of well-characterized microbial production platforms  $\rightarrow$  Safe Strain Lineage
- Standard manufacture process & specifications
- Published safety evaluation methodology with decision tree
- Safety publications
- Regulator engagement
- GRAS Notification track record:
  - High success rate (~95%)
  - Transparency to stakeholders



### **Other Food categories can duplicate this!**